
Media Computing Group
RWTH Aachen University

Nur Al-huda Hamdan
Christian Corsten

iPhone Application Programming
Lecture 7: Touches & Sensor Input

http://hci.rwth-aachen.de/iphone

Winter Semester 2013/2014

iPhone Application Programming • Prof. Jan Borchers

The First Segment

• Events

• UIEvent object, types, responder chain

• Multitouch events

• UITouch object, phases, response

• Gestures

• Attach gesture recognizers, state machine, custom gestures

2

iPhone Application Programming • Prof. Jan Borchers

Events

3

iPhone Application Programming • Prof. Jan Borchers

Events

4

A
pp

le

iPhone Application Programming • Prof. Jan Borchers

Event Delivery

5

User-generated event Sysetm

UIEvent

UIKit UIApplication

UIWindow

Hit-test viewFirst responder

Inside your app

iPhone Application Programming • Prof. Jan Borchers

UIEvent Types
typedef enum {
 UIEventTypeTouches,
 UIEventTypeMotion,
 UIEventTypeRemoteControl,
} UIEventType;

typedef enum {
 // available in iPhone OS 3.0
 UIEventSubtypeNone = 0,

 // for UIEventTypeMotion, available in iPhone OS 3.0
 UIEventSubtypeMotionShake = 1,

 // for UIEventTypeRemoteControl, available in iOS 4.0
 UIEventSubtypeRemoteControlPlay = 100,
 UIEventSubtypeRemoteControlPause = 101,
 UIEventSubtypeRemoteControlStop = 102,
 UIEventSubtypeRemoteControlTogglePlayPause = 103,
 UIEventSubtypeRemoteControlNextTrack = 104,
 UIEventSubtypeRemoteControlPreviousTrack = 105,
 UIEventSubtypeRemoteControlBeginSeekingBackward = 106,
 UIEventSubtypeRemoteControlEndSeekingBackward = 107,
 UIEventSubtypeRemoteControlBeginSeekingForward = 108,
 UIEventSubtypeRemoteControlEndSeekingForward = 109,
} UIEventSubtype;

6

UIEvent.h

iPhone Application Programming • Prof. Jan Borchers

Hit-test View

• Hit-test view is the lowest view that contains
the touch

• On top most view (A)

• hitTest:withEvent:

pointInside:withEvent:

YES: recursively call hitTest:withEvent: on children
(subviews)

NO: the touch is not in this view or its children, back to
super view

7

A
pp

le

iPhone Application Programming • Prof. Jan Borchers

The First Responder

8

• Designated object to receive events first

• Called from UIWindow directly

• Receives the following events

• Motion events, Remote-control events, Action messages, Editing-menu messages

• Explicit: override canBecomeFirstResponder method to return YES or
receive a becomeFirstResponder message

iPhone Application Programming • Prof. Jan Borchers

Responder Chain

9
A

pp
le

iPhone Application Programming • Prof. Jan Borchers

Input Views

10

iPhone Application Programming • Prof. Jan Borchers

Handling Text Field Input

11

// UITextField Delegate Method

- (BOOL)textFieldShouldReturn:(UITextField *)textField
{
! // Give feedback if input is invalid,
! // e.g., not a valid email address

! // Give back the first responder status
! [textField resignFirstResponder];
! return YES;
}

iPhone Application Programming • Prof. Jan Borchers

Multitouch Events

12

iPhone Application Programming • Prof. Jan Borchers

Touch

• Each touch is bound to a single finger on the
screen

• when and where (reduced to a single timestamp and a single
point)

13

iPhone Application Programming • Prof. Jan Borchers

UITouch

• Represents single touch

• Location can be reported for a given view

• Previous location included

• Additional properties:

• tapCount

• timestamp

• phase (began, moved, stationary, ended, cancelled)

• Attached gesture recognizers

14

iPhone Application Programming • Prof. Jan Borchers

UITouch in UIEvent
• Stores touches

• By view (hit-test view) and window

• For gesture recognizers

• Additional properties:

• Timestamp

• Type: touches, motion, or remote-control

• Subtype: event description for non-touch events

15

A
pp

le

iPhone Application Programming • Prof. Jan Borchers

Touch Phases

16

Events and Touches

In iOS, a touch is the presence or movement of a finger on the screen that is part of a unique multitouch
sequence. For example, a pinch-‐close gesture has two touches: two fingers on the screen moving toward
each other from opposite directions. There are simple single-‐finger gestures, such as a tap, or a double-‐tap,
a drag, or a flick (where the user quickly swipes a finger across the screen). An application might recognize
even more complicated gestures; for example, an application might have a custom control in the shape of
a dial that users “turn” with multiple fingers to fine-‐tune some variable.

A UIEvent object of type UIEventTypeTouches represents a touch event. The system continually sends
these touch-‐event objects (or simply, touch events) to an application as fingers touch the screen and move
across its surface. The event provides a snapshot of all touches during amultitouch sequence,most importantly
the touches that are new or have changed for a particular view. As depicted in Figure 2-‐1, a multitouch
sequence begins when a finger first touches the screen. Other fingers may subsequently touch the screen,
and all fingers may move across the screen. The sequence ends when the last of these fingers is lifted from
the screen. An application receives event objects during each phase of any touch.

Figure 2-1 A multitouch sequence and touch phases

UITouchPhaseEndedUITouchPhaseBegan

Touch 1
down

UITouchPhaseBegan

Touch 2
down

UITouchPhaseMoved

Touch 1 and 2
moved

Touch 1 and 2
up

Touches, which are represented by UITouch objects, have both temporal and spatial aspects. The temporal
aspect, called a phase, indicates when a touch has just begun, whether it is moving or stationary, and when
it ends—that is, when the finger is lifted from the screen.

The spatial aspect of touches concerns their association with the object in which they occur as well as their
location in it. When a finger touches the screen, the touch is associated with the underlying window and
view and maintains that association throughout the life of the event. If multiple touches arrive at once, they
are treated together only if they are associated with the same view. Likewise, if two touches arrive in quick
succession, they are treated as a multiple tap only if they are associated with the same view. A touch object
stores the current location and previous location (if any) of the touch in its view or window.

An event object contains all touch objects for the currentmultitouch sequence and can provide touch objects
specific to a view or window (see Figure 2-‐2). A touch object is persistent for a given finger during a sequence,
and UIKit mutates it as it tracks the finger throughout it. The touch attributes that change are the phase of
the touch, its location in a view, its previous location, and its timestamp. Event-‐handling code may evaluate
these attributes to determine how to respond to a touch event.

16 Events and Touches
2011-03-10 | © 2011 Apple Inc. All Rights Reserved.

CHAPTER 2

Multitouch Events

A
pp

le

Touch 1
down

Touch 2
down

Touch 1 and 2
moved

Touch 1 and 2
up

iPhone Application Programming • Prof. Jan Borchers

Handling Touch Events

// initial touch
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

// updated touch
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

// cancelled touch (by external event)
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent
*)event

// finished touch
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

17

iPhone Application Programming • Prof. Jan Borchers18

Handling Touch Events

A
pp

le

iPhone Application Programming • Prof. Jan Borchers

Tracing a UITouch

// keep a reference for a touch
for (UITouch *touch in touches]) {
 NSValue *key = [NSValue valueWithPointer:touch];
 [myTouches setValue:FirstFinger forKey:key];
}

// to retrieve a touch
for (UITouch *touch in touches) {
 NSValue *key = [NSValue valueWithPointer:touch];
 NSObject *valueFromDictionary = [myTouches valueForKey:key];
}

19

• UITouch objects don’t have an ID, and you cannot retain them in your
code because they keep changing!

iPhone Application Programming • Prof. Jan Borchers

UIControl: Pre-defined Responses

• Subclass of UIView

• UI elements for control: buttons, sliders, etc.

• Send action messages

• Additional properties:

• State: enabled, selected, highlighted

20

iPhone Application Programming • Prof. Jan Borchers

Demo: TouchEvents

21

iPhone Application Programming • Prof. Jan Borchers

Demo: DragSubView

22

iPhone Application Programming • Prof. Jan Borchers

Gesture Recognizers

23

iPhone Application Programming • Prof. Jan Borchers24

Predefined Gesture Recognizers

iPhone Application Programming • Prof. Jan Borchers

Attaching Gesture Recognizers

25

A
pp

le

iPhone Application Programming • Prof. Jan Borchers

Attaching a Gesture Recognizer

1. Create and initialize a gesture recognizer (in VC)
 UITapGestureRecognizer *tapRecognizer = [[UITapGestureRecognizer alloc]
initWithTarget:self action:@selector(respondToTapGesture:)];

2. Configure that gesture
tapRecognizer.numberOfTapsRequired = 1;

3. Add the tap gesture recognizer to the view
[self.view addGestureRecognizer:tapRecognizer];

4. Implement the action method that handles the gesture (in V)
-(void) respondToTapGesture: (UITapGestureRecognizer*)recognizer {...}

26

iPhone Application Programming • Prof. Jan Borchers27

Action message

Action message

Touch events

Touch events

Continuous and Discrete Gestures

A
pp

le

iPhone Application Programming • Prof. Jan Borchers

State Machines for Gesture Recognizers

28

ContinuousDiscrete

UIGestureRecognizerStatePossible

UIGestureRecognizerStateRecognized

UIGestureRecognizerStateBegan

UIGestureRecognizerStateChanged

UIGestureRecognizerStateEnded

UIGestureRecognizerStateCancelled

UIGestureRecognizerStateFailed

A
pp

le

iPhone Application Programming • Prof. Jan Borchers

Custom Gesture Recognizers
1. Create a subclass of UIGestureRecognizer in Xcode

2. Add to header: #import <UIKit/UIGestureRecognizerSubclass.h>

3. Add to your implementation file:

• touchesMoved:withEvent:

• touchesEnded:withEvent:

• touchesCancelled:withEvent:

• touchesBegan:withEvent:

4. Reset internal state

reset

5. Avoid conflicting gestures

• canBePreventedByGestureRecognizer:

• canPreventGestureRecognizer:

29

iPhone Application Programming • Prof. Jan Borchers

Demo: GestureRecognizer

30

iPhone Application Programming • Prof. Jan Borchers

Core Motion

31

iPhone Application Programming • Prof. Jan Borchers

Motion Events

• Much simpler than using sensor data

• Only a shake-motion is defined

• Usage

• Make your view first responder

• Implement the following methods

- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event

- (void)motionCancelled:(UIEventSubtype)motion withEvent:(UIEvent *)event

• ApplicationSupportsShakeToEdit

32

iPhone Application Programming • Prof. Jan Borchers

Device Orientation

• Tell UIDevice to generate device orientation notifications

beginGeneratingDeviceOrientationNotifications

• Register to receive these notification

UIDeviceOrientationDidChangeNotification

• Turn off device orientation notifications

endGeneratingDeviceOrientationNotifications

33

iPhone Application Programming • Prof. Jan Borchers

UIAccelerometer

• Alternative to Core Motion

• Only for acceleration

• Usage:

• Get shared instance (singleton)

• Configure update frequency

• Assign delegate

• Acceleration reported as UIAcceleration

Objects are updated for performance reasons

34

iPhone Application Programming • Prof. Jan Borchers

UIAccelerometer

- (void)viewWillAppear:(BOOL)animated
{
! UIAccelerometer *a = [UIAccelerometer sharedAccelerometer];
! a.updateInterval = 0.1;
! a.delegate = self;
}

- (void)accelerometer:(UIAccelerometer *)accelerometer didAccelerate:
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! (UIAcceleration *)acceleration
{
! NSLog(@"%f %f %f", acceleration.x, acceleration.y, acceleration.z);

}

35

iPhone Application Programming • Prof. Jan Borchers

Accelerometer Update Frequency

36

10–20 Orientation detection

30–60 Real-time input (e.g., games)

70–100 high-frequency motion (e.g., hitting or shaking the
device quickly)

iPhone Application Programming • Prof. Jan Borchers

Accelerometer vs. Gyroscope

37

• Accelerometer

• Measures proper acceleration

• Relative to free fall

• 1.0 = 1G (earth’s acceleration)

• Gyroscope

• Measure rotation

iPhone Application Programming • Prof. Jan Borchers

Accelerometer vs. Gyroscope

38

iPhone Application Programming • Prof. Jan Borchers

Core Motion

39

• Obtain motion data from available sensors

• Accelerometer (alternative to UIAccelerometer)

• Gyroscope

• Framework

• CMMotionManager

• CMAccelerometerData

• CMGyroData

• CMDeviceMotion

iPhone Application Programming • Prof. Jan Borchers

CMMotionManager

• Operates on accelerometer, gyro, or both

• Updating with handler:

• startXUpdates

• startXUpdatesToQueue:withHandler:

• Block is added to NSOperationQueue

• Updating without handler:

• startXUpdates

• Query sensor data when needed (e.g., through timer)

•X = [Accelerometer | Gyro | DeviceMotion]

40

iPhone Application Programming • Prof. Jan Borchers

CMAcceleration

41

iPhone Application Programming • Prof. Jan Borchers

CMGyroData

42

iPhone Application Programming • Prof. Jan Borchers

CMDeviceMotion

• Only available with Gyroscope

• Position in 3D Space

• Attitude: roll, pitch, yaw, or rotationMatrix, or quaternion

• x, y, z rotation

• Acceleration

• Gravity vector

• User acceleration vector

43

iPhone Application Programming • Prof. Jan Borchers

Filtering Data

• Low-pass filter

• Pass low-frequency, cut off high-frequency signals

• Detect orientation changes

• Reduces jittering

• High-pass filter

• Pass high-frequency, cut off low-frequency signals

• Detect jittering

• Returns relative value

44

iPhone Application Programming • Prof. Jan Borchers45

iPhone Application Programming • Prof. Jan Borchers

Low-Pass / High-Pass Filter

// low-pass filter
CGFloat lowpassFilter(CGFloat value, CGFloat filterFactor) {
! static CGFloat lowpassValue;
! lowpassValue = value*filterFactor + lowpassValue*
 (1.0 - filterFactor);
! return lowpassValue;
}

// high-pass filter
CGFloat highpassFilter(CGFloat value, CGFloat filterFactor) {
! static CGFloat prevValue, highpassValue;
! highpassValue = filterFactor * (highpassValue+value-
prevValue);
! prevValue = value;
! return highpassValue;
}

46

iPhone Application Programming • Prof. Jan Borchers

Demo: Marble

47

iPhone Application Programming • Prof. Jan Borchers

iOS7: M7 Coprocessor

• Only for iPhone 5S, iPad Air, and iPad mini with Retina display

• Accelerometer, gyroscope, compass

• Measures motion data continuously without running down the
battery

• Used for step counting, fitness/health apps

• Check Core Motion Framework Reference

48

iPhone Application Programming • Prof. Jan Borchers

New Classes for M7

• Use CMMotionActivityManager to start/stop activity updates

• Updates are delivered as instances of CMMotionActivity objects

• A CMMotionActivity object contains all data for each motion event

• Boolean properties: stationary, running, walking, automotive

• Other properties: startDate, confidence

49

iPhone Application Programming • Prof. Jan Borchers

New Classes for M7

• CMStepCounter: record the user’s steps

• Use isStepCountingAvailable method to check whether device supports step
counting (YES) or not (NO)

• Start listening for steps:

• updateOn:(NSInteger)stepCounts to determine after how many
steps your app should be notified about step updates

• M7 records steps even if the app is not asking for them

50

- (void)startStepCountingUpdatesToQueue:(NSOperationQueue *)queue
 updateOn:(NSInteger)stepCounts
 withHandler:(CMStepUpdateHandler)handler;

iPhone Application Programming • Prof. Jan Borchers

Demo:
Motion Activity & Step Counting

51

iPhone Application Programming • Prof. Jan Borchers

Other Input

52

iPhone Application Programming • Prof. Jan Borchers53

Proximity Sensor

• Located at the top of the phone

• Triggered at a distance of ~5cm

• Default behavior (phone app):

• Turn off display / touch sensing

iPhone Application Programming • Prof. Jan Borchers

Using the Proximity Sensor

// enable proximity monitoring
[[UIDevice currentDevice] setProximityMonitoringEnabled:YES];

// register for notifications
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(proximityChanged:)
 name:UIDeviceProximityStateDidChangeNotification
! object:[UIDevice currentDevice]];

// handle proximity change
- (void)proximityChanged:(NSNotification *)notification {
! BOOL proximityState = [[notification object] proximityState];
! NSLog(@"Proximity Changed: %@", proximityState);
}

54

iPhone Application Programming • Prof. Jan Borchers

Remote-Control
• Become first responder

• Turn on remote-control events

[[UIApplication sharedApplication]
beginReceivingRemoteControlEvents];

• Implement

- (void) remoteControlReceivedWithEvent:
 (UIEvent *) receivedEvent

• Turn off remote-control events

[[UIApplication sharedApplication]
endReceivingRemoteControlEvents];

55

iPhone Application Programming • Prof. Jan Borchers

Remote-Control
- (void)viewDidAppear:(BOOL)animated {

! [super viewDidAppear:animated];
! [[UIApplication sharedApplication] beginReceivingRemoteControlEvents];
! [self becomeFirstResponder];
}
- (void) remoteControlReceivedWithEvent: (UIEvent *) receivedEvent {
! if (receivedEvent.type == UIEventTypeRemoteControl) {
! ! switch (receivedEvent.subtype) {
! ! ! case UIEventSubtypeRemoteControlTogglePlayPause:
! ! ! ! [self playOrStop: nil];
! ! ! ! break;
! ! ! case UIEventSubtypeRemoteControlPreviousTrack:
! ! ! ! [self previousTrack: nil];
! ! ! ! break;
! ! ! case UIEventSubtypeRemoteControlNextTrack:
! ! ! ! [self nextTrack: nil];
! ! ! ! break;
! ! ! default:!break;
}}}

56

iPhone Application Programming • Prof. Jan Borchers

Summary

• Touch & gesture recognizers

• Core Motion

• Accelerometer

• Gyroscope

• Device motion

• M7 coprocessor

• Other: proximity, remote-control

• Reading assignment

• Event Handling Guide

57

